Algebra IIB Lesson: April 6, 2020

Learning Target: Students will identify features of exponential graphs

Let's Get Started:

Watch Video: Characteristics of Exponential Functions

Features we are looking for: ASYMPTOTE - The line the curve approaches but never crosses.

- In an exponential equation it is ALWAYS horizontal
- It is the constant at the end of the equation
- It is written y=-6

What are the features of the function $f(x) = 3^x - 6$ graphed below?

Features we are looking for: END BEHAVIOR: Focus on the arrows on either end. If the curve continues, where will those arrows eventually end up?

Describe the overall curve: if the right arrow is point up it is an INCREASING (GROWTH) model. If it is going down it is DECREASING (DECAY) model.

Describe the left arrow:

As
$$x \to -\infty, f(x) \to -6$$

Describe the right arrow: As $x \rightarrow \infty$, $f(x) \rightarrow \infty$ What are the features of the function $f(x) = 3^x - 6$ graphed below?

Features we are looking for: DOMAIN: All the possible x-values of the equation RANGE: All the possible y-values of the equation

In an exponential equation the DOMAIN is usually all real numbers and is written $(-\infty,\infty)$. In real world applications it may be limited. For instance, if x represents time the domain would be $[0,\infty)$

RANGE is bounded by the asymptote: $(-6, \infty)$

What are the features of the function $f(x) = 3^x - 6$ graphed below?

What are the features of the function $f(x) = 2\left(\frac{1}{2}\right)^x$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = \left(\frac{1}{3}\right)^x - 1$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = 2(2)^x - 4$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = \left(\frac{1}{2}\right)^x - 4$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = -2^x + 6$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = 3^x - 6$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

Answers 1 and 2

What are the features of the function $f(x) = 2\left(rac{1}{2}
ight)^x$ graphed below?

Horizontal asymptote at y = 0

What are the features of the function $f(x) = \left(\begin{smallmatrix} 1 \\ 3 \end{smallmatrix}
ight)^x - 1$ graphed below?

Horizontal asymptote at y = -1

The function f(x) is an exponential function with a <u>horizontal</u> asymptote of $\underline{y} = \underline{o}$. The range of the function is $(\underline{o}, \underline{\infty})$, and it is <u>decreasing</u> on its domain of $(\underline{-\infty}, \underline{\infty})$. The end behavior on the LEFT side is as $\underline{x} \rightarrow \underline{-\infty}, \underline{y} \rightarrow \underline{\infty}$, and the end behavior on the RIGHT side is as $\underline{x} \rightarrow \underline{\infty}, \underline{y} \rightarrow \underline{o}$. The function f(x) is an exponential function with a <u>horizontal</u> asymptote of <u>y = -1</u>. The range of the function is $(-1, \infty)$, and it is <u>decreasing</u> on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as <u>x $\rightarrow -\infty$ </u>, <u>y $\rightarrow \infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -1$ </u>.

Answers 3 and 4

What are the features of the function $f(x) = 2(2)^{x} - 4$ graphed below?

Horizontal asymptote at y = -4

The function f(x) is an exponential function with a <u>horizontal</u> asymptote of y = -4. The range of the function is $(-4, \infty)$, and it is <u>increasing</u> on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $\underline{x \to -\infty}, \underline{y \to -4}$, and the end behavior on the RIGHT side is as $\underline{x \to \infty}, \underline{y \to \infty}$. What are the features of the function $f(x) = \left(\frac{1}{2}\right)^x - 4$ graphed below?

Horizontal asymptote at y = -4

The function f(x) is <u>an exponential</u> function with a <u>horizontal</u> asymptote of <u>y = -4</u>. The range of the function is $(\underline{-4, \infty})$, and it is <u>decreasing</u> on its domain of $(\underline{-\infty, \infty})$. The end behavior on the LEFT side is as $\underline{x \to -\infty}, \underline{y \to \infty}$, and the end behavior on the RIGHT side is as $\underline{x \to \infty}, \underline{y \to -4}$.

Answers 5 and 6

Problems taken from Deltamath.com: features of exponential and log functions

What are the features of the function $f(x) = -2^x + 6$ graphed below?

The function f(x) is <u>an exponential</u> function with a <u>horizontal</u> asymptote of <u>y = 6</u>. The range of the function is ($-\infty$, 6), and it is <u>decreasing</u> on its domain of ($-\infty$, ∞). The end behavior on the LEFT side is as <u>x $\rightarrow -\infty$ </u>, <u>y $\rightarrow -\infty$ </u>, <u>and</u> the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>. What are the features of the function $f(x) = 3^x - 6$ graphed below?

Horizontal asymptote at y = -6

The function f(x) is an exponential function with a <u>horizontal</u> asymptote of y = -6. The range of the function is $(-6, \infty)$, and it is <u>increasing</u> on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $x \to -\infty$, $y \to -6$, and the end behavior on the RIGHT side is as $x \to \infty$, $y \to \infty$.