Algebra IIB
 Lesson: April 6, 2020

Learning Target:

Students will identify features of exponential graphs

Let's Get Started:
Watch Video: Characteristics of Exponential Functions

Features we are looking for: ASYMPTOTE - The line the curve approaches but never crosses.

- In an exponential equation it is ALWAYS horizontal
- It is the constant at the end of the equation
- It is written $\mathrm{y}=-6$

Features we are looking for:

END BEHAVIOR: Focus on the arrows on either end. If the curve continues, where will those arrows eventually end up?
Describe the overall curve: if the right arrow is point up it is an INCREASING (GROWTH) model. If it is going down it is DECREASING (DECAY) model.
Describe the left arrow:
As $x \rightarrow-\infty, f(x) \rightarrow-6$

Describe the right arrow:
As $x \rightarrow \infty, f(x) \rightarrow \infty$

Features we are looking for:

DOMAIN: All the possible x-values of the equation
RANGE: All the possible y-values of the equation

In an exponential equation the DOMAIN is usually all real numbers and is written $(-\infty, \infty)$. In real world applications it may be limited. For instance, if x represents time the domain would be $[0, \infty)$

RANGE is bounded by the asymptote: $(-6, \infty)$

PRACTICE 1

What are the features of the function $f(x)=2\left(\frac{1}{2}\right)^{x}$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 2

What are the features of the function $f(x)=\binom{1}{3}^{x}-1$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 3

What are the features of the function $f(x)=2(2)^{x}-4$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 4

What are the features of the function $f(x)=\binom{1}{2}^{x}-4$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 5

What are the features of the function $f(x)=-2^{x}+6$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 6

What are the features of the function $f(x)=3^{x}-6$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

Answers 1 and 2

What are the features of the function $f(x)=2\binom{1}{2}^{x}$ graphed below?
Horizontal asymptote at $y=0$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=0$. The range of the function is $(\underline{0}, \infty)$, and it is decreasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow-\infty, y \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow \mathrm{o}$.

What are the features of the function $f(x)=\binom{1}{3}^{x}-1$ graphed below?

$$
\text { Horizontal asymptote at } y=-1
$$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=-1$. The range of the function is $(-1, \infty)$, and it is decreasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $\underline{x} \rightarrow-\infty, y \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-1$.

Answers 3 and 4

What are the features of the function $f(x)=2(2)^{x}-4$ graphed below?

Horizontal asymptote at $y=-4$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=-4$. The range of the function is $(-4, \infty)$, and it is increasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $x \rightarrow-\infty, y \rightarrow-4$, and the end behavior on the RIGHT side is as $\underline{x} \rightarrow \infty, y \rightarrow \infty$.

What are the features of the function $f(x)=\binom{1}{2}^{x}-4$ graphed below?
Horizontal asymptote at $y=-4$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=-4$. The range of the function is $(-4, \infty)$, and it is decreasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $\underline{x} \rightarrow-\infty, y \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-4$.

Answers 5 and 6

What are the features of the function $f(x)=-2^{x}+6$ graphed below?

Horizontal asymptote at $y=6$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=6$. The range of the function is $(-\infty, 6)$, and it is decreasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $x \rightarrow-\infty, y \rightarrow 6$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-\infty$.

Problems taken from Deltamath.com: features of exponential and log functions

What are the features of the function $f(x)=3^{x}-6$ graphed below?

$$
\text { Horizontal asymptote at } y=-6
$$

The function $f(x)$ is an exponential function with a horizontal asymptote of $\mathrm{y}=-6$. The range of the function is $(-6, \infty)$, and it is increasing on its domain of $(-\infty, \infty)$. The end behavior on the LEFT side is as $x \rightarrow-\infty, y \rightarrow-6$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow \infty$.

